Dr. Marques Sophie Office 519

Algebra 1

Spring Semester 2015 marques@cims.nyu.edu

Quiz #3

Problems:

1. Let Ω_n be the set of the n-th roots of unity

$$\Omega_n = \{ z \in \mathbb{C} : |z| = 0 \} = \{ e^{2\pi i k/n} : 0 \le k \le n-1 \}$$

- (a) Prove that Ω is a group.
- (b) Prove that the map

$$\phi: \begin{tabular}{lll} $\phi:$ & $\mathbb{Z}/n\mathbb{Z}$ &\to & Ω_n \\ & k &\mapsto & $e^{2\pi i k/n}$ \\ \end{tabular}$$

is a well defined isomorphism.

- 2. (a) Give the definition of a cyclic group G and their classification (i.e. describe G when |G| is finite and infinite).
 - (b) Prove that a group with no non-trivial non proper subgroup is cyclic.
- 3. For d|n, give an element of order d of $\mathbb{Z}/n\mathbb{Z}$. Justify your answer.
- 4. Let X be a set and G a group, given a group action $G \times X \to X$, prove that the stabilizer Stab(x) of a point $x \in X$ is a subgroup of G. Is G/Stab(x) necessarily a group? To which interesting set is this quotient isomorphic to?